2 research outputs found

    Approaches Toward Combining Positron Emission Tomography with Magnetic Resonance Imaging

    Get PDF
    Positron emission tomography (PET) and magnetic resonance imaging (MRI) provide complementary information, and there has been a great deal of research effort to combine these two modalities. A major engineering hurdle is that photomultiplier tubes (PMT), used in conventional PET detectors, are sensitive to magnetic field. This thesis explores the design considerations of different ways of combining small animal PMT-based PET systems with MRI through experimentation, modelling and Monte Carlo simulation. A proof-of-principle hybrid PET and field-cycled MRI system was built and the first multimodality images are shown. A Siemens Inveon PET was exposed to magnetic fields of different strengths and the performance is characterized as a function of field magnitude. The results of this experiment established external magnetic field limits and design studies are shown for wide range of approaches to combining the PET system with various configurations of field-cycled MRI and superconducting MRI systems. A sophisticated Monte Carlo PET simulation workflow based on the GATE toolkit was developed to model the Siemens Inveon PET. Simulated PET data were converted to the raw Siemens list-mode format and were processed and reconstructed using the same processing chain as the data measured on the actual scanner. A general GATE add-on was developed to rapidly generate attenuation correction sinograms using the precise detector geometry and attenuation coefficients built into the emission simulation. Emission simulations and the attenuation correction add-on were validated against measured data. Simulations were performed to study the impact of radiofrequency coil components on PET image quality and to test the suitability of various MR-compatible materials for a dual-modality animal bed

    Design and construction of a gradient coil for high resolution marmoset imaging

    No full text
    A gradient coil with integrated second and third order shims has been designed and constructed for use inside an actively shielded 310 mm horizontal bore 9.4 T small animal MRI. An extension of the boundary element method, to minimise the power deposited in conducting surfaces, was used to design the gradients, and a boundary element method with a constraint on mutual inductance was used to design the shims. The gradient coil allows for improved imaging performance and was optimized for an imaging region appropriate for marmoset imaging studies. Efficiencies of 1.5 mT m-1 A-1 were achieved in a 15 cm wide bore while maintaining gradient uniformity ≤5% over the 8 cm region of interest. Two new cooling methods were implemented which allowed the gradient coil to operate at 100 A RMS, 25 % of max current with a temperature rise below 30 C
    corecore